Shape of mole nose providing minimum axial resistance
نویسندگان
چکیده
Introduction: As a carrier of different sensors, moles can penetrate into the regolith automatically and keep investigating the subsurface environment continuously. In this section, features of several moles with different applications are introduced to explain why we choose a hammer-driven mole to study. Mole driven by a hammer: In this section, the penetrating principle of a hammer-driven mole is illustrated and a circular arc shape for the front nose is proposed. Moreover, applying the penetrating principle, experiments of the mole with an arc-shaped nose are performed to observe the penetration phenomena in a simulated lunar regolith. Mechanics analysis: According to soil mechanics theory, regions of soil failure are divided and a mechanics model is established between soil and mole with an arc-shaped nose. The work is done to get approximate axial resistance equations which are analyzed with the defined geometric parameters caliber-radius-head. EDEM simulations: EDEM is leading global software based on discrete element method, whose main function is to analyze and observe the movement of particles. Lunar soil simulacrum is established to simulate axial resistance. Eventually, the theoretical results are validated by simulation.
منابع مشابه
Steady-state Penetration of Transversely Isotropic Rigid/perfectly Plastic Targets
Ahstraet-Axisymmetric deformations of a transversely isotropic, rigid/perfectly plastic target being penetrated by a long rigid cylindrical rod with an ellipsoidal nose have been analyzed. The deformations of the target appear steady to an observer situated at the penetrator nose tip. The contact between the target and the penetrator is assumed to be smooth. Computed results show that the defor...
متن کاملA Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)
The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...
متن کاملInvestigation on Nose and Tail Shape Effects on Hydrodynamic Parameters in Autonomous Underwater Vehicles
Development of autonomous underwater vehicles (AUVs) which meets the design constraints and provides the best hydrodynamic performance is really an important challenge in the field of hydrodynamics. In this paper a new profile is used for designing the hull of AUVs. The nose and tail profiles of an AUV using presented profile is designed such that it can properly consider the length constraints...
متن کاملBuckling of Piezoelectric Composite Cylindrical Shell Under Electro-thermo-mechanical Loading
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-ba...
متن کاملBonding lithium disilicate ceramic to feather-edge tooth preparations: a minimally invasive treatment concept.
PURPOSE To report the short-term clinical outcome of a new minimally invasive prosthetic approach utilizing monolithic lithium-disilicate full crowns bonded to feather-edge tooth preparations. MATERIALS AND METHODS 235 teeth, 136 anterior and 99 posterior, requiring a full crown were prepared with a feather-edge finish line providing a minimum space on the vertical walls of 0.3 mm at the marg...
متن کامل